Vortrag

"Bewertungsschema für eine abgestufte Bewertung von Programmieraufgaben in E-Klausuren"

Nicole Jara, <u>Manuel Molina Madrid</u>
Programmierlabor des Instituts für Informatik
Universität zu Köln

DeLFI 2015, München 04.09.2015

Inhalt

- Motivation
- Identifizierung von Syntaxfehler
- Klassifikation der Syntaxfehler
- Ausblick

 Programmierkurs des Instituts für Informatik (Univ. zu Köln)

→ ca. 400 - 600 Klausuren, 8 - 12 stud. Mitarbeiter/innen, vier 8-Stunden-Tage

 Entwicklung eines Fragetyps für Programmieraufgaben

- → Plugin für ILIAS
- → Bewertungssystem (inkl. abgestufte Bewertung)
- → Kommunikation per XML

DeLFI 2015: Demo, Do, 10:00-11:00 Uhr, Luisenstr. 37

Pluain

ILIAS

Compiler/Interpreter

Bewertungssystem

Motivation /2/2

- Abgestufte Bewertung:
 - → Identifizierung von Syntaxfehlern
 - → Klassifizierung der Syntaxfehlern in Fehlerklassen
- Buggy-Lernermodell¹;
 - → Das fehlerhafte Wissen des Lernenden ist eine fehlerhafte Variation des Expertenwissens.
 - → Ermittlung des fehlerhaften Wissens anhand von Fehlertheorien
 - → Speicherung in Fehlerbibliotheken

¹ siehe [BB78, DvL80, YO81]

Expertenwissen

Identifizierung von Syntaxfehlern

1/2

- Analyse von Lösungscodes archivierter Klausuren
- WiSe 2012/2013 & WiSe 2013/2014 (711 Klausuren)
 - → Zufällige Auswahl von 74 Klausuren (10,41 %)
 - → 26 weiblich (35,14 %), 48 männlich (64,86 %)
 - → 35 Wirt-Math. (47,30%), 30 Wirt.-Inf. (40,54 %),
 8 Math. (10,81 %), 1 Sonst. (1,35 %)
- Klausuraufbau:
 - → Allgemeine Fragen
 - → Programmanalyse und Debuggen,
 - → Programmierung

Identifizierung von Syntaxfehlern

2/2

 Programmieraufgaben: Potenz, Fakultät, Matrizenaddition, Zahlenumwandlung, LinkedList<T>

Fehlertypen	Anzahl	%-Anteil
Geschweifte Klammer nicht geschlossen	34	45,95
Variable wird nicht deklariert	15	20,27
Fehlendes return Statement	13	17,57
Parameterübergabe von String ohne ""	><9 <u>₩</u>	12,16
Kein generischer Datentyp angegeben	9 💢	12,16
Runde Klammer nicht geschlossen	9	12,16
Länge des Arrays mittels array.length()	8	10,81
Deklarierung der Laufvariable fehlt	8	10,81
Methodenaufruf ohne Parameterklammern	7	9,46
Variablennamen werden doppelt	6	8,11

Tabelle 1: Die 10 häufigsten Fehler der Studierenden

Klassifizierung der Syntaxfehler Bewertungsschema

1/4

- Ziel einer Bewertung:
 - → Einstufung der Programmierkenntnisse
 - → Verinnerlichung von Grundlagen der Programmierung
 - → Aufbau weiterführender Kenntnisse auf Grundlagen
- Bewertungsschema (7 Fehlerklassen):
 - → Syntaxfehler in der prozeduralen Programmierung, in der Grundstruktur von Programmen in Java und i. Z. m. Methoden
 - → Syntaxfehler in der objektorientierten Programmierung, i. Z. m. Array und Flüchtigkeitsfehler

Klassifikation der Syntaxfehler Bewertungsschema

2/4

Grundlegendes Verständnis über Datenfluss und Aufbau

Datenstrukturen deklarieren, initialisieren

Programmstruktur

Deklarierung und Initialisierung von Variablen

Fehlende Deklarierung vor der Initialisierung Verwenden einer nicht initialisierten (nicht deklarierten) Variablen

Gleicher Variablenbezeichner für mehrere unterschiedliche Variablen

Wertzuweisung

Nicht Zuweisungskompatibel

Grundstruktur von Java-Programmen

Klassenkopf und main-Methode

Klassenkopf und main-Methode

class fehlt

Strukturelle Erweiterung eines Programmablaufs

Entscheidungszweige

Schleifen

Verzweigung

Aufbau einer if-else Anweisung

Boolische Ausdrücke

einfaches Gleichheitszeichen

Schleife

Abweißschleife while, Durchlaufschleife do-while, Zählschleife for

Schleifenkopf fehlerhaft

Initialisierungsteil: Deklarierung der Variable fehlt

Abbruchbedingung, Inkrementierungsteil

Tabelle 2.1: Syntaxfehler in den prozeduralen Grundlagen und in der Grundstruktur von Programmen in Java

Klassifikation der Syntaxfehler Bewertungsschema

3/4

Zusammenfassen bestimmter Befehlsfolgen in Methoden

Struktur und Aufbau einer Methode

Aufruf einer Methode

Methoden

Methodenkopf

Parameterklammern fehlen

Parametertyp der Parameter fehlt

Rückgabetyp fehlt

Geschweifte Methodenklammern werden nicht gesetzt

Speziell Funktion (Methode mit Rückgabe)

return-Anweisung fehlt

Datentyp der return-Anweisung stimmt nicht mit gefordertem Rückgabetyp überein

Platzierung: return nur in if-Bed., (return in Schleifen -semantischer Fehler)

Methodenaufruf

Parameterklammern fehlen

Parameterübergabe fehlt

Parameterübergabe mit Angabe des Datentyps

Methodeaufruf ohne Zuweisung des Rückgabewertes

Array als spezieller Datentyp

Arrays

Array nur deklariert

Länge des Arrays als Methodenaufruf a.length()

Fehlerhafter Zugriff auf Inhalte

Bezeichner hinter eckigen Klammern

Operationen auf ganze Arrays angewandt

Mehrdimensionales Array: Deklarierung, Erzeugung, Zugriff analog zu eindim.

Tabelle 2.2: Syntaxfehler i. Z. m. Methoden und Array

Klassifikation der Syntaxfehler Bewertungsschema

4/4

Objektorientierung

Klassen

Konstruktor

Erzeugung von Objekten

Generelle Struktur nicht einbehalten

Argumente werden nicht übergeben

Objektorientierung

Methodenzugriff ohne Objektbezeichner

(weitere Fehler hinsichtlich Methode, s.o)

Erweiterung des Grundwissens

Dynamische Datenstrukturen

LinkedList<T>

kein generischer Datentyp angegeben

Erzeugung der Datenstruktur fehlerhaft

Hinzufügen eines Elements nicht korrekt

Vererbung

Geerbte Klasse versucht auf private Attribut der Oberklasse zuzugreifen

Abstrakte Klassen

Flüchtigkeitsfehler

Klammersetzung

Runde Klammer ..) wird nicht geschlossen Geschweifte Klammer ..} wird nicht geschlossen

Semikolon

Semikolon am Ende einer Anweisung fehlt

Tabelle 2.3: Syntaxfehler in der Objektorientierung und Flüchtigkeitsfehler

Ausblick

- Neubewertung von Klausuren aus vergangenen Programmierkursen
- Ab Wintersemester 2015/2016 werden die Klausuren nach dem Bewertungsschema korrigiert.
 - Per Hand oder Automatisch bei E-Klausuren ohne/mit automatischen Bewertungssystem
- Erweiterung des Bewertungsschema
- Erweiterung des bestehenden Bewertungssystems, um eine abgestufte Bewertung
 - → Identifizierung von Syntaxfehler aus Lösungscodes
 - → Klassifizierung der Syntaxfehler in die Fehlerklassen

Literatur

- [BB78] Brown, John S. und Richard R. Burton: Diagnostic Models for Procedural Bugs in Basic Mathematical Skills. Cognitive Science, 2(2):155-192, 1978.
- [BvL80] Brown, John S. und Kurt van Lehn: Repair Theory: A Generative Theory of Bugs in Procedural Skills. Cognitive Science, 4:379-426, 1980.
- [YO81] Young, Richard M. und Tim O'Shea: Errors in Children's Subtraction. Cognitive Science, 5(2):153-177, 1981.

Vielen Dank für Ihre Aufmerksamkeit!

Fragen?

